由于选择偏差,观察数据估算平均治疗效果(ATE)是有挑战性的。现有作品主要以两种方式应对这一挑战。一些研究人员建议构建满足正交条件的分数函数,该函数确保已建立的估计量“正交”更加健壮。其他人探索表示模型,以实现治疗组和受控群体之间的平衡表示。但是,现有研究未能进行1)在表示空间中歧视受控单元以避免过度平衡的问题; 2)充分利用“正交信息”。在本文中,我们提出了一个基于最新协变量平衡表示方法和正交机器学习理论的中等平衡的表示学习(MBRL)框架。该框架可保护表示形式免于通过多任务学习过度平衡。同时,MBRL将噪声正交性信息纳入培训和验证阶段,以实现更好的ATE估计。与现有的最新方法相比,基准和模拟数据集的全面实验表明,我们方法对治疗效应估计的优越性和鲁棒性。
translated by 谷歌翻译
经济学和医疗保健方面的许多实际决策问题寻求从观察数据中估算平均治疗效果(ATE)。双重/辩护的机器学习(DML)是观察性研究中估计吃量的普遍方法之一。但是,DML估计器可能会遇到错误的问题,甚至在倾向分数被弄错或非常接近0或1时进行极端估计。现有文献从理论的角度解决了这个问题。在本文中,我们提出了一种健壮的因果学习(RCL)方法,以抵消DML估计量的缺陷。从理论上讲,RCL估计量i)与DML估计器一样一致且双重稳健,ii)可以摆脱错误混合问题。从经验上讲,全面的实验表明,i)RCL估计器比DML估计器给出了因果参数的稳定估计,ii)RCL估计器在模拟和基准标准数据集上应用不同的机器学习模型时,RCL估计器优于传统估计器及其变体。 。
translated by 谷歌翻译
Causal learning is the key to obtaining stable predictions and answering \textit{what if} problems in decision-makings. In causal learning, it is central to seek methods to estimate the average treatment effect (ATE) from observational data. The Double/Debiased Machine Learning (DML) is one of the prevalent methods to estimate ATE. However, the DML estimators can suffer from an \textit{error-compounding issue} and even give extreme estimates when the propensity scores are close to 0 or 1. Previous studies have overcome this issue through some empirical tricks such as propensity score trimming, yet none of the existing works solves it from a theoretical standpoint. In this paper, we propose a \textit{Robust Causal Learning (RCL)} method to offset the deficiencies of DML estimators. Theoretically, the RCL estimators i) satisfy the (higher-order) orthogonal condition and are as \textit{consistent and doubly robust} as the DML estimators, and ii) get rid of the error-compounding issue. Empirically, the comprehensive experiments show that: i) the RCL estimators give more stable estimations of the causal parameters than DML; ii) the RCL estimators outperform traditional estimators and their variants when applying different machine learning models on both simulation and benchmark datasets, and a mimic consumer credit dataset generated by WGAN.
translated by 谷歌翻译
Machine Reading Comprehension has become one of the most advanced and popular research topics in the fields of Natural Language Processing in recent years. The classification of answerability questions is a relatively significant sub-task in machine reading comprehension; however, there haven't been many studies. Retro-Reader is one of the studies that has solved this problem effectively. However, the encoders of most traditional machine reading comprehension models in general and Retro-Reader, in particular, have not been able to exploit the contextual semantic information of the context completely. Inspired by SemBERT, we use semantic role labels from the SRL task to add semantics to pre-trained language models such as mBERT, XLM-R, PhoBERT. This experiment was conducted to compare the influence of semantics on the classification of answerability for the Vietnamese machine reading comprehension. Additionally, we hope this experiment will enhance the encoder for the Retro-Reader model's Sketchy Reading Module. The improved Retro-Reader model's encoder with semantics was first applied to the Vietnamese Machine Reading Comprehension task and obtained positive results.
translated by 谷歌翻译
While the rollout of the fifth-generation mobile network (5G) is underway across the globe with the intention to deliver 4K/8K UHD videos, Augmented Reality (AR), and Virtual Reality (VR) content to the mass amounts of users, the coverage and throughput are still one of the most significant issues, especially in the rural areas, where only 5G in the low-frequency band are being deployed. This called for a high-performance adaptive bitrate (ABR) algorithm that can maximize the user quality of experience given 5G network characteristics and data rate of UHD contents. Recently, many of the newly proposed ABR techniques were machine-learning based. Among that, Pensieve is one of the state-of-the-art techniques, which utilized reinforcement-learning to generate an ABR algorithm based on observation of past decision performance. By incorporating the context of the 5G network and UHD content, Pensieve has been optimized into Pensieve 5G. New QoE metrics that more accurately represent the QoE of UHD video streaming on the different types of devices were proposed and used to evaluate Pensieve 5G against other ABR techniques including the original Pensieve. The results from the simulation based on the real 5G Standalone (SA) network throughput shows that Pensieve 5G outperforms both conventional algorithms and Pensieve with the average QoE improvement of 8.8% and 14.2%, respectively. Additionally, Pensieve 5G also performed well on the commercial 5G NR-NR Dual Connectivity (NR-DC) Network, despite the training being done solely using the data from the 5G Standalone (SA) network.
translated by 谷歌翻译
This paper introduces a learned hierarchical B-frame coding scheme in response to the Grand Challenge on Neural Network-based Video Coding at ISCAS 2023. We address specifically three issues, including (1) B-frame coding, (2) YUV 4:2:0 coding, and (3) content-adaptive variable-rate coding with only one single model. Most learned video codecs operate internally in the RGB domain for P-frame coding. B-frame coding for YUV 4:2:0 content is largely under-explored. In addition, while there have been prior works on variable-rate coding with conditional convolution, most of them fail to consider the content information. We build our scheme on conditional augmented normalized flows (CANF). It features conditional motion and inter-frame codecs for efficient B-frame coding. To cope with YUV 4:2:0 content, two conditional inter-frame codecs are used to process the Y and UV components separately, with the coding of the UV components conditioned additionally on the Y component. Moreover, we introduce adaptive feature modulation in every convolutional layer, taking into account both the content information and the coding levels of B-frames to achieve content-adaptive variable-rate coding. Experimental results show that our model outperforms x265 and the winner of last year's challenge on commonly used datasets in terms of PSNR-YUV.
translated by 谷歌翻译
A major goal of multimodal research is to improve machine understanding of images and text. Tasks include image captioning, text-to-image generation, and vision-language representation learning. So far, research has focused on the relationships between images and text. For example, captioning models attempt to understand the semantics of images which are then transformed into text. An important question is: which annotation reflects best a deep understanding of image content? Similarly, given a text, what is the best image that can present the semantics of the text? In this work, we argue that the best text or caption for a given image is the text which would generate the image which is the most similar to that image. Likewise, the best image for a given text is the image that results in the caption which is best aligned with the original text. To this end, we propose a unified framework that includes both a text-to-image generative model and an image-to-text generative model. Extensive experiments validate our approach.
translated by 谷歌翻译
Audio-visual approaches involving visual inputs have laid the foundation for recent progress in speech separation. However, the optimization of the concurrent usage of auditory and visual inputs is still an active research area. Inspired by the cortico-thalamo-cortical circuit, in which the sensory processing mechanisms of different modalities modulate one another via the non-lemniscal sensory thalamus, we propose a novel cortico-thalamo-cortical neural network (CTCNet) for audio-visual speech separation (AVSS). First, the CTCNet learns hierarchical auditory and visual representations in a bottom-up manner in separate auditory and visual subnetworks, mimicking the functions of the auditory and visual cortical areas. Then, inspired by the large number of connections between cortical regions and the thalamus, the model fuses the auditory and visual information in a thalamic subnetwork through top-down connections. Finally, the model transmits this fused information back to the auditory and visual subnetworks, and the above process is repeated several times. The results of experiments on three speech separation benchmark datasets show that CTCNet remarkably outperforms existing AVSS methods with considerablely fewer parameters. These results suggest that mimicking the anatomical connectome of the mammalian brain has great potential for advancing the development of deep neural networks. Project repo is https://github.com/JusperLee/CTCNet.
translated by 谷歌翻译
Label smoothing is a regularization technique widely used in supervised learning to improve the generalization of models on various tasks, such as image classification and machine translation. However, the effectiveness of label smoothing in multi-hop question answering (MHQA) has yet to be well studied. In this paper, we systematically analyze the role of label smoothing on various modules of MHQA and propose F1 smoothing, a novel label smoothing technique specifically designed for machine reading comprehension (MRC) tasks. We evaluate our method on the HotpotQA dataset and demonstrate its superiority over several strong baselines, including models that utilize complex attention mechanisms. Our results suggest that label smoothing can be effective in MHQA, but the choice of smoothing strategy can significantly affect performance.
translated by 谷歌翻译
The dual-encoder has become the de facto architecture for dense retrieval. Typically, it computes the latent representations of the query and document independently, thus failing to fully capture the interactions between the query and document. To alleviate this, recent work expects to get query-informed representations of documents. During training, it expands the document with a real query, while replacing the real query with a generated pseudo query at inference. This discrepancy between training and inference makes the dense retrieval model pay more attention to the query information but ignore the document when computing the document representation. As a result, it even performs worse than the vanilla dense retrieval model, since its performance depends heavily on the relevance between the generated queries and the real query. In this paper, we propose a curriculum sampling strategy, which also resorts to the pseudo query at training and gradually increases the relevance of the generated query to the real query. In this way, the retrieval model can learn to extend its attention from the document only to both the document and query, hence getting high-quality query-informed document representations. Experimental results on several passage retrieval datasets show that our approach outperforms the previous dense retrieval methods1.
translated by 谷歌翻译